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1.Discuss the frequency domain techniques of image enhancement in detail. 

Enhancement In Frequency Domain: 

 
The frequency domain methods of image enhancement are based on convolution theorem. This is 

represented as, 

 
Where. 

g(x, y) = h (x, y)*f(x, y) 

 
g(x, y) = Resultant image 

h(x, y) = Position invariant operator 

f(x, y)= Input image 

The Fourier transform representation of equation above is, 
 

G (u, v) = H (u, v) F (u, v) 
 

The function H (u, v) in equation is called transfer function. It is used to boost the edges of input 

image f (x, y) to emphasize the high frequency components. 

 

The different frequency domain methods for image enhancement are as follows. 

 
1. Contrast stretching. 

2. Clipping and thresholding. 

3. Digital negative. 

4. Intensity level slicing and 

5. Bit extraction. 

 
 

1. Contrast Stretching: 

 

Due to non-uniform lighting conditions, there may be poor contrast between the background and 

the feature of interest. Figure 1.1 (a) shows the contrast stretching transformations. 
 

 

Fig.1.1 (a) Histogram of input image 
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Fig.1.1 (b) Linear Law 
 

 

 

 

Fig.1.1 (c) Histogram of the transformed image 

 

These stretching transformations are expressed as 

 

 

 

In the area of stretching the slope of transformation is considered to be greater than unity. The 

parameters of stretching transformations i.e., a and b can be determined by examining the 

histogram of the image. 

 
2. Clipping and Thresholding: 

 

Clipping is considered as the special scenario of contrast stretching. It is the case in which the 

parameters are α = γ = 0. Clipping is more advantageous for reduction of noise in input signals of 

range [a, b]. 

 
Threshold of an image is selected by means of its histogram. Let us take the image shown in the 

following figure 1.2. 
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Fig. 1.2 

 

The figure 1.2 (b) consists of two peaks i.e., background and object. At the abscissa of histogram 

minimum (D1) the threshold is selected. This selected threshold (D1) can separate background 

and object to convert the image into its respective binary form. The thresholding transformations 

are shown in figure 1.3. 
 

 

 

 

Fig.1.3 

 

3. Digital Negative: 

 

The digital negative of an image is achieved by reverse scaling of its grey levels to the 

transformation. They are much essential in displaying of medical images. 

 

A digital negative transformation of an image is shown in figure 1.4. 
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Fig.1.4 
 

 

4. Intensity Level Slicing: 

 

The images which consist of grey levels in between intensity at background and other objects 

require to reduce the intensity of the object. This process of changing intensity level is done with 

the help of intensity level slicing. They are expressed as 
 

 

 

 

 
The histogram of input image and its respective intensity level slicing is shown in the figure 1.5. 

 

 

 

Fig.1.5 
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When an image is uniformly quantized then, the nth most significant bit can be extracted and 

displayed. 
 

Let, u = k1 2
B-1 + k2 2

B-2 +… .................. + kB-1 2 + kB 

 

Then, the output is expressed as 
 

 

 

2. Distinguish between spatial domain and frequency domain enhancement 

techniques. 

The spatial domain refers to the image plane itself, and approaches in this category are based on 

direct manipulation of pixels in an image. Frequency domain processing techniques are based on 

modifying the Fourier transform of an image. 

 
The term spatial domain refers to the aggregate of pixels composing an image and spatial domain 

methods are procedures that operate directly on these pixels. Image processing function in the 

spatial domain may he expressed as. 

 
 

g(x, y) = T[f(x, y)] 
 
 

Where 

 

 

(x, y). 

 
f(x, y) is the input image 

g(x, y) is the processed image and 

T is the operator on f defined over some neighborhood values of 

 
 

Frequency domain techniques are based on convolution theorem. Let g(x, y) be the image  

formed by the convolution of an image f(x, y) and linear position invariant operation h(x, y) i.e., 

 

g(x, y) = h(x, y) * f(x, y) 

Applying convolution theorem 

G(u, v) = H(u, v) F(u, v) 
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Where G, H and F are the Fourier transforms of g, h and f respectively. In the terminology of 

linear system the transform H (u, v) is called the transfer function of the process. The edges in 

f(x, y) can he boosted by using H (u, v) to emphasize the high frequency components of F (u, v). 

 

 

3. Explain about Ideal Low Pass Filter (ILPF) in frequency domain. 
 
Lowpass Filter: 

 

The edges and other sharp transitions (such as noise) in the gray levels of an image contribute 

significantly to the high-frequency content of its Fourier transform. Hence blurring (smoothing) 

is achieved in the frequency domain by attenuating us the transform of a given image. 

 

G (u, v) = H (u, v) F(u, v) 

 
 

where F (u, v) is the Fourier transform of an image to be smoothed. The problem is to select a 

filter transfer function H (u, v) that yields G (u, v) by attenuating the high-frequency components 

of F (u, v). The inverse transform then will yield the desired smoothed image g (x, y). 

 

Ideal Filter: 

 

A 2-D ideal lowpass filter (ILPF) is one whose transfer function satisfies the relation 
 

 

 

 
where D is a specified nonnegative quantity, and D(u, v) is the distance from point (u, v) to the 

origin of the frequency plane; that is, 
 
 

 
Figure 3 (a) shows a 3-D perspective plot of H (u, v) u a function of u and v. The name ideal 

filter indicates that oil frequencies inside a circle of radius 
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Fig.3 (a) Perspective plot of an ideal lowpass filter transfer function; (b) filter cross 

section. 

 

Do are passed with no attenuation, whereas all frequencies outside this circle are completely 

attenuated. 

The lowpass filters are radially symmetric about the origin. For this type of filter, specifying a 

cross section extending as a function of distance from the origin along a radial line is sufficient, 

as Fig. 3 (b) shows. The complete filter transfer function can then be generated by rotating the 

cross section 360 about the origin. Specification of radially symmetric filters centered on the N x 

N frequency square is based on the assumption that the origin of the Fourier transform has been 

centered on the square. 

For an ideal lowpass filter cross section, the point of transition between H(u, v) = 1 and H(u, v) = 

0 is often called the cutoff frequency. In the case of Fig.3 (b), for example, the cutoff frequency 

is Do. As the cross section is rotated about the origin, the point Do traces a  circle giving a locus 

of cutoff frequencies, all of which are a distance Do from the origin. The cutoff frequency 

concept is quite useful in specifying filter characteristics. It also serves as a common base for 

comparing the behavior of different types of filters. 

 

The sharp cutoff frequencies of an ideal lowpass filter cannot be realized with electronic 

components, although they can certainly be simulated in a computer. 
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4. Discuss about Butterworth lowpass filter with a suitable example. 
 

Butterworth filter: 

 

The transfer function of the Butterworth lowpass (BLPF) of order n and with cutoff frequency 

locus at a distance Do, from the origin is defined by the relation 
 

 

 

 

A perspective plot and cross section of the BLPF function are shown in figure 4. 
 

 

Fig.4 (a) A Butterworth lowpass filter (b) radial cross section for n = 1. 

 

 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that establishes  

a clear cutoff between passed and filtered frequencies. For filters with smooth transfer functions, 

defining a cutoff frequency locus at points for which H (u, v) is down to a certain fraction of its 

maximum value is customary. In the case of above Eq. H (u, v) = 0.5 (down 50 percent from its 

maximum value of 1) when D (u, v) = Do. Another value commonly used is 1/√2 of the 

maximum value of H (u, v). The following simple modification yields the desired value when D 

(u, v) = Do: 
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5. Discuss about Ideal High Pass Filter and Butterworth High Pass filter. 
 

High pass Filtering: 

 

An image can be blurred by attenuating the high-frequency components of its Fourier transform. 

Because edges and other abrupt changes in gray levels are associated with high-frequency 

components, image sharpening can be achieved in the frequency domain by a high pass filtering 

process, which attenuates the low-frequency components without disturbing high-frequency 

information in the Fourier transform. 

 
Ideal filter: 

 

2-D ideal high pass filter (IHPF) is one whose transfer function satisfies the relation 
 
 

 
 

where Do is the cutoff distance measured from the origin of the frequency plane. Figure 5.1 

shows a perspective plot and cross section of the IHPF function. This filter is the opposite of the 

ideal lowpass filter, because it completely attenuates all frequencies inside a circle of radius Do 

while passing, without attenuation, all frequencies outside the circle. As in the case of the ideal 

lowpass filler, the IHPF is not physically realizable. 
 

 

Fig.5.1 Perspective plot and radial cross section of ideal high pass filter 
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Butterworth filter: 
 

The transfer function of the Butterworth high pass filter (BHPF) of order n and with cutoff 

frequency locus at a distance Do from the origin is defined by the relation 
 

 

 

Figure 5.2 shows a perspective plot and cross section of the BHPF function. Note that when  D  

(u, v) = Do, H (u, v) is down to ½ of its maximum value. As in the case of the Butterworth 

lowpass filter, common practice is to select the cutoff frequency locus at points for which H (u, 

v) is down to 1/√2 of its maximum value. 
 

 

 

 

 

Fig.5.2 Perspective plot and radial cross section for Butterworth High Pass Filter with n = 1 
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6. Discuss about Gaussian High Pass and Gaussian Low Pass Filter. 
 

Gaussian Lowpass Filters: 

 

The form of these filters in two dimensions is given by 
 

 

where, D(u, v) is the distance from the origin of the Fourier transform. 
 

 

 

 

Fig.6.1 (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image, 

(c) Filter radial cross sections for various values of Do. 

 

σ is a measure of the spread of the Gaussian curve. By letting σ = Du, we can express the filter in  

a more familiar form in terms of the notation: 
 

 

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to  0.607  of its 

maximum value. 

 

 

Gaussian Highpass Filters: 

 

The transfer function of the Gaussian highpass filter (GHPF) with cutoff frequency locus at a 

distance Do from the origin is given by 
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The figure 6.2 shows a perspective plot, image, and cross section of the GHPF function. 
 

 

Fig.6.2. Perspective plot, image representation, and cross section of a typical Gaussian high 

pass filter 

 

 

Even the filtering of the smaller objects and thin bars is cleaner with the Gaussian filler. 

 

 

7. Explain how Laplacian is implemented in frequency domain. 
 

The Laplacian in the Frequency Domain: 

 

It can be shown that 
 

 

From this simple expression, it follows that 
 

 

The expression inside the brackets on the left side of the above Eq. is recognized  as  the  

Laplacian of f(x, y). Thus, we have the important result 
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which simply says that the Laplacian can be implemented in the frequency domain by using the 

filter 
 

 

As in all filtering operations, the assumption is that the origin of F (u, v) has been centered by 

performing the operation f(x, y) (-1) x+y  prior to  taking the transform of  the image. If f (and F) 

are of size M X N, this operation shifts the center transform so that (u, v) = (0, 0) is at point   

(M/2, N/2) in the frequency rectangle. As before, the center of the filter function also needs to be 

shifted: 
 

 

The Laplacian-filtered image in the spatial domain is obtained by computing the inverse Fourier 

transform of H (u, v) F (u, v): 
 

 

Conversely, computing the Laplacian in the spatial domain and computing the Fourier transform 

of the result is equivalent to multiplying F(u, v) by H(u, v). We express this dual relationship in 

the familiar Fourier-transform-pair notation 
 

 

The spatial domain Laplacian filter function obtained by taking the inverse Fourier transform of 

Eq. has some interesting properties, as Fig.7 shows. Figure 7(a) is a 3-D perspective plot. The 

function is centered at (M/2, N/2), and its value at the top of the dome is zero. All other values   

are negative. Figure 7(b) shows H (u, v) as an image, also centered. Figure 7(c) is the Laplacian   

in the spatial domain, obtained by multiplying by H (u, v) by (-1)u+v , taking the inverse Fourier 

transform, and multiplying the real part of the result by (-l)x+y . Figure 7(d) is a zoomed section at 

about the origin of Fig.7(c).' Figure 7(e) is a horizontal gray-level profile passing through the 

center of the zoomed section. Finally, Fig.7 (f) shows the mask to implement the definition of the 

discrete Laplacian in the spatial domain. 
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Fig.7 (a) 3-D plot of Laplacian in the frequency domain, (b) Image representation of (a), (c) 

Laplacian in the spatial domain obtained from the inverse DFT of  (b) (d)  Zoomed section  

of the origin of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask 
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A horizontal profile through the center of this mask has the same basic shape as the profile in  

Fig. 7(e) (that is, a negative value between two smaller positive values). We form an enhanced 

image g(x, y) by subtracting the Laplacian from the original image: 
 

 

 

8. Write about high boost and high frequency filtering. 
 

High-Boost Filtering and High-Frequency Emphasis Filtering: 

 

All the filtered images have one thing in common: Their average background intensity has been 

reduced to near black. This is due to the fact that the highpass filters we applied to those images 

eliminate the zero-frequency component of their Fourier transforms. In fact, enhancement using 

the Laplacian does precisely this, by adding back the entire image to the filtered result.  

Sometimes it is advantageous to increase the contribution made by the original image to the 

overall filtered result. This approach, called high-boost filtering, is a generalization of unsharp 

masking. Unsharp masking consists simply of generating a sharp image by subtracting from an 

image a blurred version of itself. Using frequency domain terminology, this means obtaining a 

highpass-filtered image by subtracting from the image a lowpass-filtered version of itself. That is 
 

 

High-boost filtering generalizes this by multiplying f (x, y) by a constant A > 1: 
 

 

 

Thus, high-boost filtering gives us the flexibility to increase the contribution made by the image  

to the overall enhanced result. This equation may be written as 
 

 

Then, using above Eq. we obtain 
 

 

This result is based on a highpass rather than a lowpass image. When A = 1, high-boost filtering 

reduces to regular highpass filtering. As A increases past 1, the contribution made by the image 

itself becomes more dominant. 
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We have Fhp (u,v) = F (u,v) – Flp (u,v). But Flp (u,v) = Hlp (u,v)F(u,v), where Hlp is the transfer 

function of a lowpass filter. Therefore, unsharp masking can be implemented directly in the 

frequency domain by using the composite filter 
 

 

Similarly, high-boost filtering can be implemented with the composite filter 
 

 

with A > 1. The process consists of multiplying this filter by the (centered) transform of the input 

image and then taking the inverse transform of the product. Multiplication of the real part of this 

result by (-l) x+y gives us the high-boost filtered image fhb (x, y) in the spatial domain. 

 
9. Explain the concept of homomorphic filtering. 

 
Homomorphic filtering: 

 

The illumination-reflectance model can be used to develop a frequency domain procedure for 

improving the appearance of an image by simultaneous gray-level range compression  and  

contrast enhancement. An image f(x, y) can be expressed as the product of illumination and 

reflectance components: 
 

 

Equation above cannot be used directly to operate separately on the frequency components of 

illumination and reflectance because the Fourier transform of the product of two functions is not 

separable; in other words, 
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where Fi (u, v) and Fr (u, v) are the Fourier transforms of ln i(x, y) and ln r(x, y), respectively. If 

we process Z (u, v) by means of a filter function H (u, v) then, from 
 
 

 
where S (u, v) is the Fourier transform of the result. In the spatial domain, 

 

 

Now we have 

 

 
Finally, as z (x, y) was formed by taking the logarithm of the original image f (x, y), the inverse 

(exponential) operation yields the desired enhanced image, denoted by g(x, y); that is, 
 

 

 

 

 

Fig.9.1 Homomorphic filtering approach for image enhancement 



Digital Image Processing MODULE – 02 

 

 

DR.NAVEEN B, ASSOCAITE PROFESSOR, Dept. of ECE Page 18 
 

 

and 
 

 

are the illumination and reflectance components of the output image. The enhancement approach 

using the foregoing concepts is summarized in Fig. 9.1. This method is based on a special case of 

a class of systems known as homomorphic systems. In this particular application, the key to the 

approach is the separation of the illumination and reflectance components achieved. The 

homomorphic filter function H (u, v) can then operate on these components separately. 

 

The illumination component of an image generally is characterized by slow 

spatial variations, while the reflectance component tends to vary abruptly, particularly at the 

junctions of dissimilar objects. These characteristics lead to associating the low  frequencies of  

the Fourier transform of the logarithm of an image with illumination and the high frequencies  

with reflectance. Although these associations are rough approximations, they can be used to 

advantage in image enhancement. 

 

A good deal of control can be gained over the illumination and 

reflectance components with a homomorphic filter. This control requires specification of a filter 

function H (u, v) that affects the low- and high-frequency components of the Fourier transform in 

different ways. Figure 9.2 shows a cross section of such a filter. If the parameters γL and γH are 

chosen so that γL < 1 and γH > 1, the filter function shown in Fig. 9.2 tends to decrease the 

contribution made by the low frequencies (illumination) and amplify the contribution made by 

high frequencies (reflectance). The net result is simultaneous dynamic range compression and 

contrast enhancement. 
 

 
Fig.9.2 Cross section of a circularly symmetric filter function D (u. v) is the distance from  

the origin of the centered transform. 
 


